Bond lengths and angles are given in Table 2, but meaningful comparisons with other oxadiazoles are precluded by the relatively high coordinate errors in the present work. The molecular disorder, which is manifested by the partial occupancies of $\mathrm{N}(1)$ and $\mathrm{N}(6)$ [and $\mathrm{N}\left(1^{\prime}\right)$ and $\mathrm{N}\left(6^{\prime}\right)$], encompasses the $\mathrm{N}-\mathrm{O}-\mathrm{N}-\mathrm{O}$ portion of the oxadiazole ring and the $\mathrm{C}(5)$-linked NO_{2} group, but cannot be readily detected in the NO_{2} atoms because of the similar positions of the oxadiazole and NO_{2} moieties with respect to the six-membered ring. An examination of the packing diagram (Fig. 2) reveals that the intermolecular environments of $\mathrm{N}(1) / \mathrm{N}(6)$ [and $\left.\mathrm{N}\left(1^{\prime}\right) / \mathrm{N}\left(6^{\prime}\right)\right]$ are very similar, with nonbonded distances of $2.74(2), 3.00(2) \AA$ to $\mathrm{N}(1), 2.66(3), 3.11(3) \AA$ to $\mathrm{N}(6), 2.81(2), 2.86(2) \AA$ to $\mathrm{N}\left(1^{\prime}\right)$ and $2.78(3)$, $3.05(2) \AA$ to $\mathrm{N}\left(6^{\prime}\right)$. This pattern may provide a rationale for the disorder in that the molecule has approximate C_{2} symmetry about $C(4) \cdots C(7)$ and the intramolecular contacts do not appear to favor an oxadiazole N at one position or the other.

This work was supported by the Naval Sea System Command, under task 61153N SR024-03 and, in part,
through the facilities of the Computer Science Center of the University of Maryland.

References

Ammon, H. L. \& Bhattacharjee, S. K. (1982). Acta Cryst. B38, 2498-2502.
Ammon, H. L. \& Bhattacharjee, S. K. (1984). Acta Cryst. C40, 487-490.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
International Tables for X-ray Crystallography (1974). Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, l., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MUltan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Norris, W. P. (1984). Gov. Rep. Announce. (US), 84, 220.
Nyburg, S. C. (1974). Acta Cryst. B30, 251-253.
Prince, E. (1982). Acta Cryst. B38, 1099-1100.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, h. L., Heck, H. S. \& Flack, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1986). C42, 727-729

2,6-Diiodo-4-methyl-1,2,6-triarsabicy clo[2.2.1]heptane

By Jochen Ellermann and Eberhard Köck*
Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-8520 Erlangen, Federal Republic of Germany

and Hans Burzlaff
Institut für Angewandte Physik, Lehrstuhl für Kristallographie der Universität Erlangen-Nürnberg, Bismarckstrasse 10, D-8520 Erlangen, Federal Republic of Germany

(Received 4 November 1985; accepted 20 December 1985)

Abstract

C}_{5} \mathrm{H}_{9} \mathrm{As}_{3} \mathrm{I}_{2}, M_{r}=547 \cdot 70\), monoclinic, $P 2_{1} / c$, $a=6.443$ (2), $b=17.101$ (12), $c=10.804$ (9) $\AA, \quad \beta$ $=99.62(5)^{\circ}, \quad V=1174(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $3.10 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Ag} K \alpha)=0.55936 \AA, \quad \mu=72.2 \mathrm{~cm}^{-1}$, $F(000)=976$, room temperature. Final $R=0.053$ for 2993 unique reflections including unobserveds. The molecule consists of an I-As-As-As-I skeleton in a W-like shape and the organic group $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3}$, bridging the three As atoms. In the crystal the molecules associate into dimers by intermolecular As \cdots As interactions [2.919 (2), 3.166 (2) \AA]. These dimers form two-dimensional networks with rather short I \cdots I distances [3.656 (2) \AA].

[^0]0108-2701/86/060727-03\$01.50

Introduction. The structure determination of the title compound forms part of a research program on a series of cage compounds (Ellermann, Köck \& Burzlaff, 1985).

Experimental. The dihalide $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{As}\right)_{3} \mathrm{I}_{2}$ was prepared according to equation (1) (Ellermann, Brehm \& Moll, 1986) from $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{AsI}_{2}\right)_{3}$ (Ellermann, Schössner \& Lindner, 1978) and $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{As}\right)_{3}$ (Thiele, Zoubek, Lindner \& Ellermann, 1978):
$\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{AsI}_{2}\right)_{3}+2 \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{As}\right)_{3} \rightarrow$

$$
\begin{equation*}
3 \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{As}\right)_{3} \mathrm{I}_{2} . \tag{1}
\end{equation*}
$$

Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave dark-red crystals. Spherical crystal with $r=0.14 \pm 0.03 \mathrm{~mm}$ used for X-ray analysis. Intensities collected on a Philips © 1986 International Union of Crystallography

PW 1100 diffractometer with $\mathrm{Ag} K \alpha$ radiation and a graphite monochromator, $\omega-2 \theta$ scans with scan width $1.0^{\circ}+0.2^{\circ} \tan \theta$; lattice parameters from setting angles for 25 reflections ($12 \leq 2 \theta \leq 15^{\circ}$) using refinement program GIVER (Krogmann, 1966); spherical absorption correction applied with $\mu R=1.01 \pm 0.22$, absorption correction factor $A=4.01 \pm 0.16$; index range $h \pm 9, k 0 / 22, l 0 / 14$; three standard reflections (intensity variation 0.8%); 6145 reflections measured, $\sin \left(\theta_{\max }\right) / \lambda=0.81 \AA^{-1}$; after averaging symmetrically equivalent reflections 2993 reflections remained [92 unobserveds included, $I<3 \sigma(I)$], $R_{\text {int }}=0.064$. Structure solved by combination of direct and Patterson methods, subsequent Fourier maps revealed all C atoms, only some of the H atoms could be found in ΔF map, so all H atoms omitted from further computations; final least-squares calculations (on F values) refined scale factor, coordinates and anisotropic temperature parameters; corrections for anomalous dispersion and extinction with $r^{*}=1.9 \times 10^{-4} \mathrm{~cm}$ (Zachariasen, 1967) applied; weights $w=1 / \sigma^{2}\left(\left|F_{o}\right|\right)$; scattering factors from International Tables for X-ray Crystallography (1974). Final $R=0.053, w R=0.043$; $S=1.82$; max. $\Delta / \sigma=0.03 ; \Delta \rho$ in final difference Fourier map within +1.3 and $-4.3 \mathrm{e} \AA^{-3}$ (both close to I atoms). For all computations CRYSTAN system (Burzlaff, Böhme \& Gomm, 1977) used and for plots ORTEPII (Johnson, 1977).

Discussion. Coordinates and equivalent isotropic temperature factors are listed in Table 1. \dagger
${ }^{1} \mathrm{H}$ NMR, IR, Raman, and mass spectroscopy (Ellermann et al., 1986) indicated the probable constitution of the title compound in solution with C_{s} symmetry. In the solid state the As atoms form an isosceles triangle. With the two I atoms these form an almost symmetrical W -shape. The organic group which is linked to the As atoms fixes this shape (Fig. 1). Selected bond lengths and angles are reported in Table 2; they are in agreement with the literature data (Camerman \& Trotter, 1963; Fröhlich \& Tebbe, 1982).

In the crystal, the molecules (Fig. 2) associate into dimeric groups by As \cdots As interactions whereby the two organic parts are oriented in opposite directions. The short intermolecular As \cdots As distances [2.919 (2), $3 \cdot 166$ (2) \AA] indicate a strong interaction (Daly \& Sanz, 1970). These dimers form two-dimensional networks by means of rather short I \cdots I interactions [$3.656(2) \dot{\AA}]$ (see Fig. 2), which are comparable to the second-shortest distances found in the I_{2} crystal (van Bolhuis, Koster \& Migchelsen, 1967).
\dagger Lists of structure amplitudes and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42721 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ with e.s.d.'s in parentheses and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{2}\right)$

	$U_{\mathrm{eq}}=\frac{1}{6 \pi^{2}} \sum_{i} \sum_{j} \beta_{i j}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$.			
	x	y	z	$U_{\text {eq }}$
I(1)	1772 (1)	3706 (1)	2092 (1)	$5 \cdot 34$
I(2)	1937 (2)	7872 (1)	1051 (1)	6.61
As(1)	3868 (2)	4685 (1)	952 (1)	3.80
As(2)	1534 (2)	5770 (1)	1165 (1)	4.06
As(3)	3904 (2)	6660 (1)	354 (1)	4.46
C(1)	5996 (20)	5061 (8)	2379 (12)	4.58
C(2)	3098 (22)	5931 (9)	2875 (11)	$5 \cdot 17$
C(3)	6006 (21)	6526 (8)	1922 (13)	4.81
C(4)	5464 (21)	5882 (8)	2813 (12)	4.75
C(5)	6811 (30)	6034 (12)	4101 (16)	8.08

Table 2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$
E.s.d.'s are given in parentheses.

As(1)-l(1)	2.589 (2)	$\mathrm{C}-\mathrm{C}$	1.53-1.54 (2)
As(3)-I(2)	2.606 (2)	As(1)...As(1')	$2.919{ }^{\left(2^{1}\right)^{*}}$
$\mathrm{As}(1)-\mathrm{As}(2)$	2.423 (2)	$\mathrm{As}(1) \cdots \mathrm{As}\left(3^{\prime}\right)$	$3 \cdot 166$ (21)**
$\mathrm{As}(2)-\mathrm{As}(3)$	2.422 (2)	I $(1) \cdots 1\left(2^{\prime}\right)$	3.656 (2ii) ${ }^{\text {² }}$
As-C	1.97-2.00 (1)		
As(1)-As(2)-As(3)	90.45 (4)	As(1)-C(1)-C(4)	111.8 (7)
1(1)-As(1)-As(2)	93.91 (4)	$\mathrm{As}(2)-\mathrm{C}(2)-\mathrm{C}(4)$	107.8 (7)
$\mathrm{I}(2)-\mathrm{As}(3)-\mathrm{As}(2)$	91.67 (4)	$\mathrm{As}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	114.8 (8)
I(1)-As(1)-C(1)	$100 \cdot 7$ (2)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	110 (1)
I(2)-As(3)-C(3)	98.0 (2)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	112 (1)
$\mathrm{As}(2)-\mathrm{As}(1)-\mathrm{C}(1)$	92.2 (2)	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	109 (1)
As(2)-As(3)-C(3)	90.0 (2)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	108 (1)
$\mathrm{As}(1)-\mathrm{As}(2)-\mathrm{C}(2)$	88.2 (2)	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	111 (1)
$\mathrm{As}(3)-\mathrm{As}(2)-\mathrm{C}(2)$	89.8 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	107 (1)

Symmetry codes: (i) and (ii) $1-x, 1-y,-z$; (iii) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$. * For intermolecular distances see Fig. 2.

Fig. 1. The $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{As}\right)_{3} \mathrm{I}_{2}$ molecule showing atom labeling and 50% probability thermal ellipsoids.

Fig. 2. Molecular packing in the crystal.

We thank Dipl.-Chem. L. Brehm for preparation of the compound and Dr G. Liehr for performing the measurements. The work was supported by the Deutsche Forschungsgemeinschaft, the Verband der Chemischen Industrie, and the Fonds der Chemischen Industrie.

References

Bolhuis, F. van, Koster, P. B. \& Migchelsen, T. (1967). Acta Cryst. 23, 90-91.
Burzlaff, H., Böhme, R. \& Gomm, M. (1977). CRYSTAN. A Crystallographic Program System for Minicomputers. Univ. of Erlangen.
Camerman, N. \& Trotter, J. (1963). Acta Cryst. 16, 922-926.
Daly, J. J. \& SANz, F. (1970). Helv. Chim. Acta, 53, 1879-1883.

Ellermann, J., Brehm, L. \& Moll, M. (1986). Z. Anorg. Allg. Chem. In the press.
Ellermann, J., Köck, E. \& Burzlaff, H. (1985). Acta Cryst. C41, 1437-1439.
Ellermann, J., SchöSsner, H. \& Lindner, H. A. (1978). Z. Naturforsch. Teil B, 33, 603-605.
Fröhlich, R. \& Tebbe, K.-F. (1982). Z. Kristallogr. 158, 255-270.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1977). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Krogmann, K. (1966). GIVER. Algol-Programm zur Verfeinerung von Gitterkonstanten und einiger Dinge mehr. Univ. of Stuttgart.
Thiele, G., Zoubek, G., Lindner, H. A. \& Ellermann, J. (1978) Angew. Chem. Int. Ed. Engl. 17, 135-136.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1986). C42, 729-731

Structure and Stereochemistry of ($\mathbf{3 R}, \mathbf{5 R}, \mathbf{8 S}, \mathbf{1 0 R , 1 3 R}$)-ent-Pimara-9(11),15-dien-3- \boldsymbol{p}-bromobenzoate (Viguiepinol)*

By M. Soriano-García, \dagger C. Guerrero and R. A. Toscano
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510 , Mexico DF

(Received 28 October 1985; accepted 11 December 1985)

Abstract

Systematic name: $(2 R, 4 \mathrm{a} R, 7 R, 8 \mathrm{a} S, 10 \mathrm{a} R)-1,-$ 2,3,4,5a,6,7,8,8a,9,10,10a-dodecahydro-1,1,4a,7-tetra-methyl-7-vinyl-2-phenanthrenyl $\quad p$-bromobenzoate. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BrO}_{2}, M_{r}=471 \cdot 5$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a$ $=6.220$ (2),$\quad b=18.773$ (7),$\quad c=20.708$ (7) $\AA, \quad V=$ 2418 (1) $\AA^{3}, Z=4, D_{x}=1.29 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=$ $0.7107 \AA, \mu=1.70 \mathrm{~mm}^{-1}, F(000)=992, T=293 \mathrm{~K}$, $R=0.063$ for 1212 observed reflections. The molecular structure and absolute configuration are determined from the X-ray data $(2 \alpha, 4 a \alpha, 7 \beta, 8 \mathrm{a} \beta, 10 \mathrm{a} \beta)$ and confirm the structure previously assigned on the basis of chemical and spectroscopic evidence. The A / B and B / C rings are trans fused, with chair-twist-boat and twist-boat-half-chair conformations, respectively. The molecules in the crystal are packed at normal van der Waals distances. No unusually short intermolecular contacts are noted.

Introduction. The title compound (1) is a new diterpene which was isolated from the aerial parts of Viguiera pinnatilobata, a Compositae widely distributed in Mexico; the sample used was collected in Oaxaca

[^1](Estado de Oaxaca, Mexico). Chemical and spectroscopic studies led to the proposal of the chemical structure (1) (Guerrero, Nava, Quevedo, Toscano \& Soriano-Garcia, 1985), a diterpene with an entpimarane skeleton. In order to determine unambiguously the structure and absolute configuration of (1), a p-bromobenzoate derivative was prepared. We have undertaken the X-ray study of this compound (2).

(1) $R=H$
(2)

© 1986 International Union of Crystallography

[^0]: * Author for correspondence.

[^1]: * Contribution No. 779 of the Instituto de Química, UNAM. \dagger To whom correspondence should be addressed.

